Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 8(3): 277-91, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10745006

RESUMO

BACKGROUND: Mutations in components of the extraordinarily large alpha-ketoacid dehydrogenase multienzyme complexes can lead to serious and often fatal disorders in humans, including maple syrup urine disease (MSUD). In order to obtain insight into the effect of mutations observed in MSUD patients, we determined the crystal structure of branched-chain alpha-ketoacid dehydrogenase (E1), the 170 kDa alpha(2)beta(2) heterotetrameric E1b component of the branched-chain alpha-ketoacid dehydrogenase multienzyme complex. RESULTS: The 2.7 A resolution crystal structure of human E1b revealed essentially the full alpha and beta polypeptide chains of the tightly packed heterotetramer. The position of two important potassium (K(+)) ions was determined. One of these ions assists a loop that is close to the cofactor to adopt the proper conformation. The second is located in the beta subunit near the interface with the small C-terminal domain of the alpha subunit. The known MSUD mutations affect the functioning of E1b by interfering with the cofactor and K(+) sites, the packing of hydrophobic cores, and the precise arrangement of residues at or near several subunit interfaces. The Tyr-->Asn mutation at position 393-alpha occurs very frequently in the US population of Mennonites and is located in a unique extension of the human E1b alpha subunit, contacting the beta' subunit. CONCLUSIONS: Essentially all MSUD mutations in human E1b can be explained on the basis of the structure, with the severity of the mutations for the stability and function of the protein correlating well with the severity of the disease for the patients. The suggestion is made that small molecules with high affinity for human E1b might alleviate effects of some of the milder forms of MSUD.


Assuntos
Cetona Oxirredutases/química , Doença da Urina de Xarope de Bordo/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/deficiência , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Sequência de Aminoácidos , Coenzimas/metabolismo , Cristalografia por Raios X , Humanos , Cetona Oxirredutases/genética , Doença da Urina de Xarope de Bordo/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Mutação , Potássio/química , Ligação Proteica , Conformação Proteica , Pseudomonas putida/enzimologia , Homologia de Sequência de Aminoácidos
2.
Nat Struct Biol ; 6(8): 785-92, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10426958

RESUMO

The family of giant multienzyme complexes metabolizing pyruvate, 2-oxoglutarate, branched-chain 2-oxo acids or acetoin contains several of the largest and most sophisticated protein assemblies known, with molecular masses between 4 and 10 million Da. The principal enzyme components, E1, E2 and E3, are present in numerous copies and utilize multiple cofactors to catalyze a directed sequence of reactions via substrate channeling. The crystal structure of a heterotetrameric (alpha2beta2) E1, 2-oxoisovalerate dehydrogenase from Pseudomonas putida, reveals a tightly packed arrangement of the four subunits with the beta2-dimer held between the jaws of a 'vise' formed by the alpha2-dimer. A long hydrophobic channel, suitable to accommodate the E2 lipoyl-lysine arm, leads to the active site, which contains the cofactor thiamin diphosphate (ThDP) and an inhibitor-derived covalent modification of a histidine side chain. The E1 structure, together with previous structural information on E2 and E3, completes the picture of the shared architectural features of these enormous macromolecular assemblies.


Assuntos
Cetoácidos/química , Cetona Oxirredutases/química , Complexos Multienzimáticos/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Acilação , Sítios de Ligação , Cristalografia por Raios X , Hemiterpenos , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo
3.
Proc Natl Acad Sci U S A ; 96(4): 1240-5, 1999 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-9990008

RESUMO

The pyruvate dehydrogenase multienzyme complex (Mr of 5-10 million) is assembled around a structural core formed of multiple copies of dihydrolipoyl acetyltransferase (E2p), which exhibits the shape of either a cube or a dodecahedron, depending on the source. The crystal structures of the 60-meric dihydrolipoyl acyltransferase cores of Bacillus stearothermophilus and Enterococcus faecalis pyruvate dehydrogenase complexes were determined and revealed a remarkably hollow dodecahedron with an outer diameter of approximately 237 A, 12 large openings of approximately 52 A diameter across the fivefold axes, and an inner cavity with a diameter of approximately 118 A. Comparison of cubic and dodecahedral E2p assemblies shows that combining the principles of quasi-equivalence formulated by Caspar and Klug [Caspar, D. L. & Klug, A. (1962) Cold Spring Harbor Symp. Quant. Biol. 27, 1-4] with strict Euclidean geometric considerations results in predictions of the major features of the E2p dodecahedron matching the observed features almost exactly.


Assuntos
Acetiltransferases/química , Enterococcus faecalis/enzimologia , Geobacillus stearothermophilus/enzimologia , Conformação Proteica , Estrutura Secundária de Proteína , Complexo Piruvato Desidrogenase/química , Sítios de Ligação , Cristalografia por Raios X , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Substâncias Macromoleculares , Matemática , Modelos Moleculares , Software
4.
Structure ; 4(5): 555-65, 1996 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-8736554

RESUMO

BACKGROUND: Elongation factor G (EF-G) catalyzes the translocation step of translation. During translocation EF-G passes through four main conformational states: the GDP complex, the nucleotide-free state, the GTP complex, and the GTPase conformation. The first two of these conformations have been previously investigated by crystallographic methods. RESULTS: The structure of EF-G-GDP has been refined at 2.4 A resolution. Comparison with the nucleotide-free structure reveals that, upon GDP release, the phosphate-binding loop (P-loop) adopts a closed conformation. This affects the position of helix CG, the switch II loop and domains II, IV and V. Asp83 has a conformation similar to the conformation of the corresponding residue in the EF-Tu/EF-Ts complex. The magnesium ion is absent in EF-G-GDP. CONCLUSIONS: The results illustrate that conformational changes in the P-loop can be transmitted to other parts of the structure. A comparison of the structures of EF-G and EF-Tu suggests that EF-G, like EF-Tu, undergoes a transition with domain rearrangements. The conformation of EF-G-GDP around the nucleotide-binding site may be related to the mechanism of nucleotide exchange.


Assuntos
Guanosina Difosfato/química , Fatores de Alongamento de Peptídeos/química , Sítios de Ligação/fisiologia , Cristalografia , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Guanosina Difosfato/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , Conformação Proteica , Estrutura Terciária de Proteína
5.
J Mol Biol ; 258(3): 420-32, 1996 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-8642600

RESUMO

We have previously identified 20 different fusidic acid-resistant alleles of fusA, encoding mutant forms of the ribosomal translocase EF-G. One of these, P413L, is used here as the starting point in selections for internal revertants, identifying 20 different pseudo-wild-type forms of EF-G. We have also identified two alleles of fusA previously isolated as suppressors of 4.5 S RNA deficiency. All of these mutants are analysed in terms of their effects on the structural dynamics of EF-G. Most mutation conferring fusidic acid-resistance interfere with conformational changes of EF-G, but some may be located at a possible fusidic acid binding site. Revertants of the P413L mutations restore the function of EF-G with or without affecting the level of resistance to fusidic acid. The revertant mutations probably restore the balance between the GDP and GTP conformations of EF-G off the ribosome, and most of them are located close to the interface between the G domain and domain II. The procedure for the isolation of pseudo-wild-type forms of EF-G can be used to direct evolution progressively away from the wild-type while still maintaining the essential functions of EF-G.


Assuntos
Ácido Fusídico/farmacologia , Mutação , Fatores de Alongamento de Peptídeos/química , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , Antibacterianos/farmacologia , Sítios de Ligação , Análise Mutacional de DNA , Evolução Molecular Direcionada , Resistência Microbiana a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/genética , RNA Ribossômico/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Espectinomicina/farmacologia , Supressão Genética , Thermus thermophilus/genética
6.
EMBO J ; 15(6): 1350-9, 1996 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8635468

RESUMO

L1 has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding mRNA. The crystal structure of L1 from Thermus thermophilus has been determined at 1.85 angstroms resolution. The protein is composed of two domains with the N- and C-termini in domain I. The eight N-terminal residues are very flexible, as the quality of electron density map shows. Proteolysis experiments have shown that the N-terminal tail is accessible and important for 23S rRNA binding. Most of the conserved amino acids are situated at the interface between the two domains. They probably form the specific RNA binding site of L1. Limited non-covalent contacts between the domains indicate an unstable domain interaction in the present conformation. Domain flexibility and RNA binding by induced fit seems plausible.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Thermus thermophilus/química , Sequência de Aminoácidos , Sequência de Bases , Sequência Consenso , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
7.
Biochem Cell Biol ; 73(11-12): 1209-16, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8722038

RESUMO

The elongation factors G (EF-G) and Tu (EF-Tu) go through a number of conformation states in their functional cycles. Since they both are GTPases, have similar G domains and domains II, and have similar interactions with the nucleotides, then GTP hydrolysis must occur in similar ways. The crystal structures of two conformational states are known for EF-G and three are known for EF-Tu. The conformations of EF-G.GDP and EF-Tu.GTP are closely related. EF-Tu goes through a large conformational change upon GTP cleavage. This conformational change is to a large extent due to an altered interaction between the G domain and domains II and III. A number of kirromycin-resistant mutations are situated at the interface between domains I and III. The interface between the G domain and domain V in EF-G corresponds with this dynamic interface in EF-Tu. The contact area in EF-G is small and dominated by interactions between charged amino acids, which are part of a system that is observed to undergo conformational changes. Furthermore, a number of fusidic acid resistant mutants have been identified in this area. All of this evidence makes it likely that EF-G undergoes a large conformational change in its functional cycle. If the structures and conformational states of the elongation factors are related to a scheme in which the ribosome oscillates between two conformations, the pretranslocational and posttranslocational states, a model is arrived at in which EF-Tu drives the reaction in one direction and EF-G in the opposite. This may lead to the consequence that the GTP state of one factor is similar to the GDP state of the other. At the GTP hydrolysis state, the structures of the factors will be close to superimposable.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/ultraestrutura , Fatores de Alongamento de Peptídeos/ultraestrutura , Sequência de Aminoácidos , Cristalografia , Resistência Microbiana a Medicamentos , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/ultraestrutura , Fatores de Alongamento de Peptídeos/química , Estrutura Terciária de Proteína , Ribossomos
8.
EMBO J ; 13(16): 3669-77, 1994 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8070397

RESUMO

The crystal structure of Thermus thermophilus elongation factor G without guanine nucleotide was determined to 2.85 A. This GTPase has five domains with overall dimensions of 50 x 60 x 118 A. The GTP binding domain has a core common to other GTPases with a unique subdomain which probably functions as an intrinsic nucleotide exchange factor. Domains I and II are homologous to elongation factor Tu and their arrangement, both with and without GDP, is more similar to elongation factor Tu in complex with a GTP analogue than with GDP. Domains III and V show structural similarities to ribosomal proteins. Domain IV protrudes from the main body of the protein and has an extraordinary topology with a left-handed cross-over connection between two parallel beta-strands.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Alongamento de Peptídeos/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/metabolismo , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Thermus thermophilus/química
9.
FEBS Lett ; 232(2): 298-302, 1988 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-2837411

RESUMO

Membrane-bound succinate oxidoreductases are flavoenzymes containing one each of a 2Fe, a 3Fe and a 4Fe iron-sulfur center. Amino acid sequence homologies indicate that all three centers are located in the Ip (B) subunit. From polypeptide and gene analysis of Bacillus subtilis succinate dehydrogenase-defective mutants combined with earlier EPR spectroscopic data, we show that four conserved cysteine residues in the first half of Ip are the ligands to the [2Fe-2S] center. These four residues have previously been predicted to be the ligands. Our results also suggest that the N-terminal part of B. subtilis Ip constitutes a domain which can incorporate separately the 2Fe center and interact with Fp, the flavin-containing subunit of the dehydrogenase.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Succinato Desidrogenase/metabolismo , Enxofre/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Clonagem Molecular , Códon , Enzimas de Restrição do DNA , DNA Bacteriano/genética , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Técnicas de Imunoadsorção , Mutação , Plasmídeos , Succinato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...